If sinθ=1213 and θ lies in the second quadrant, find the value of secθ+tanθ.
We have,
sin2θ+cos2θ=1
⇒cos2θ=1−sin2θ
⇒cosθ=±√1−sin2θ
In the 2st quadrant cos θ is negative and tan θ is also negative
∴cosθ=−√1−sin2θ
=−√1−(1213)2[∵sinθ=1213]
=−√1−144169
=−√25169=−513
and, tanθ=sinθcosθ=1213−513=−135
Now, secθ=1cosθ=1−5=−135
∴secθ+tanθ=−135−125
=−13−125
=−255
=-5
⇒secθ+tanθ=−5