If sin θ=35 and cos ϕ=−1213 where θand ϕ both lie in the second quadrant, find the values of
(i) sin (θ−ϕ), (ii) cos (θ+ϕ), (iii) tan (θ−ϕ).
Given : sin θ=35 and cos ϕ=−1213
Since θ lies in the second quadrant, we have
sin θ > 0, cos θ <0 and tan θ <0.
Again, since ϕ lies in the second quadrant, we have
sin ϕ>0 , cos ϕ<0 and tan ϕ<0 Now, cos θ = -√1−sin2θ=−√1−925=−√1625=−45
tanθ=sin θcosθ=35×(−54)=−34 sinϕ=+√1−cos2ϕ=+√1−144169=+√25169=+513
tanϕ=sinϕcosϕ=513×(−1312)=−512
∴ (i) sin (θ−ϕ)=sin θ cos ϕ − cosθ sin ϕ
={35×(−1213)}−{(−45×513)}=(−3665+2065)=−1665
(ii) cos (θ+ϕ)=cos θ cos ϕ− sin θ sin ϕ
={(−45×(−1213))}−{35×513}=(4865−1565)=3365