If sinθ=35,tanθ=12andπ2<θ<π<=3π2, find the value of 8 tanθ−√5secϕ.
We have,
sinθ=35,tanϕ=12andπ2<θ<π<=3π2
⇒θ lies in the second quadrant and ϕ lies in the third quadrant.
Now, sin2θ+cos2θ=1
⇒cos2θ=1−sin2θ
⇒cosθ=±√1−sin2θ
In the 2nd qudrant cos \theta is negative and tan \theta is also negative
∴cosθ=−√1−sin2θ
=−√1−(35)2
=−√1−925
=−√1625
=−45
⇒cosθ=−45
and, tanθ=sinθcosθ=35−45=−34...(i)
Now, sec2ϕ−tan2ϕ=1
⇒sec2ϕ=1+tan2ϕ
⇒secϕ=±√1+tan2ϕ
In the third quadrant secϕ is negative.
secϕ=√1+(12)2
=√1+14
=−√54
⇒secϕ=−√52
∴8tanϕ−√5secϕ
=8×(−34)−√5×(−√52)
[by equations (i)and (ii)]
=−2×3+52
=−6+52
=−12+52=−72
∴8tanθ=√5secϕ=−72