If sin θ=a2−b2a2+b2, find the values of all T-ratios of θ
Sol:
In ΔABC, Let ∠ABC be θ
sin θ=a2−b2a2+b2
⇒ AB = (a2−b2)
⇒ AC = (a2+b2)
⇒ BC = √(a2+b2)2−(a2−b2)2 [According to Pythagoras theorem]
⇒ BC = √4a2b2
⇒ BC =2ab
cosθ=2aba2+b2
tanθ=(a2−b2)2ab
cosecθ=a2+b2a2−b2
secθ=a2+b22ab
and
cotθ=2aba2−b2