wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Ifsinθ=xyx+y show that tan(θ2π4)=±yx

Open in App
Solution

sinθ=xyx+y
2tanθ21+tan2θ2=xyx+y
2tanθ2x+2tanθ2y=xy+xtan2θ2ytan2θ2
2tanθ2x+2tanθ2yx+yxtan2θ2+ytan2θ2=0
2tanθ2xxxtan2θ2=2tanθ2yyytan2θ2
x(tan2θ21+2tanθ2)=y(12tanθ2tan2θ2)
x(tan2θ22tanθ2+1)=y(tan2θ2+2tanθ2+1)
x(tanθ21)2=y(tanθ2+1)2
(tanθ21)2(tanθ2+1)2=yx
(tanθ21)(tanθ2+1)=±yx
(tanθ2tanπ4)(tanθ2tanπ4+1)=±yx
tan(θ2π4)=±yx
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon