If sinθ=nsin(θ+2α), then the value of tan(θ+α) is
If tanx+tan(x+π3)+tan(x+2π3)=3, prove that 3tan x−tan3x1−3tan2 x=1.
Or
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1+n1−ntanα.