wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+sin2θ=1, find the value of :-
cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ2.

Open in App
Solution

Consider the given data.

sinθ+sin2θ=1

sinθ=1sin2θ

sinθ=cos2θ

We have,

=cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ2

=cos12θ+3cos10θ+3cos8θ+cos6θ+2(cos4θ+cos2θ1)

=(cos4θ+cos2θ)3+2(cos4θ+cos2θ1)

Since, sinθ=cos2θ

Therefore,

=(sin2θ+sinθ)3+2(sin2θ+sinθ1)

=13+2(11)

=1+0

=1

Hence, the required value is 1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon