Consider the given data.
sinθ+sin2θ=1
sinθ=1−sin2θ
sinθ=cos2θ
We have,
=cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ−2
=cos12θ+3cos10θ+3cos8θ+cos6θ+2(cos4θ+cos2θ−1)
=(cos4θ+cos2θ)3+2(cos4θ+cos2θ−1)
Since, sinθ=cos2θ
Therefore,
=(sin2θ+sinθ)3+2(sin2θ+sinθ−1)
=13+2(1−1)
=1+0
=1
Hence, the required value is 1.