If sinθ+sin2θ=1, then cos4θ+cos2θ−1=
2
1
0
-1
sinθ+sin2θ=1.....(i)
∴1−sin2θ=sinθ ....(ii)
Thus, cos4θ+cos2θ−1
=(cos2θ)2−sin2θ
=(1−sin2θ)2−sin2θ
=(sinθ)2−sin2θ.... from (ii)
=sin2θ−sin2θ
=0