If sinθ+sin2θ=1, then find the value of cos4θ+cos2θ−1.
sinθ+sin2θ=1 ∴1−sin2θ=sinθ cos2θ=sinθ .......(i) [∵cos2θ+sin2θ=1]
Thus, cos4θ+cos2θ−1 =(cos2θ)2−(1−cos2θ) =(sinθ)2−(sinθ)2 [from (i)] =0