wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+sin2θ+sin3θ=1, prove that cos6θ4cos4θ+8cos2θ=4

Open in App
Solution

Given:
sin(θ)+sin2(θ)+sin3(θ)=1

sin(θ)+sin3(θ)=1sin2(θ)

sin(θ)[1+sin2(θ)]=cos2(θ)

sin(θ)[2cos2(θ)]=cos2(θ)

Squaring both sides,

sin2(θ)[4+cos4(θ)4cos2(θ)]=cos4(θ)

[1cos2(θ)][4+cos4(θ)4cos2(θ)]=cos4(θ)

4+cos4(θ)4cos2(θ)4cos2(θ)cos6(θ)+4cos4(θ)=cos4(θ)

Rearranging the terms, we get

8cos2(θ)4cos4(θ)+cos6(θ)=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon