Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cosθ−ϕ2=±12√a2−b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanθ−ϕ2=±√4−a2−b2a2+b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cos(θ−ϕ)=a2+b2−22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Acosθ−ϕ2=±12√a2+b2 Bcos(θ−ϕ)=a2+b2−22 Dtanθ−ϕ2=±√4−a2−b2a2+b2 sinθ+sinϕ=a and cosθ+cosϕ=b Squaring both equations we get sin2θ+sin2ϕ+2sinθsinϕ=a2 ....... (i) cos2θ+cos2ϕ+2cosθcosϕ=b2....... (ii) Adding equations (i) and (ii), we get (sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)+2sinθsinϕ+2cosθcosϕ=a2+b2 2+2[cosθcosϕ+sinθsinϕ]=a2+b2
2+2[cos(θ−ϕ)]=a2+b2 ....... (iii) 2+2[2cos2(θ−ϕ2)−1]=a2+b2[∵cos2θ=2cos2θ−1] 4cos2(θ−ϕ2)=a2+b2 cos(θ−ϕ2)=±12√a2+b2 which is option (A) Using equation (iii) 2+2cos(θ−ϕ)=a2+b2 cos(θ−ϕ)=a2+b2−22 which is option (D) sin2(θ−ϕ2)=1−cos2(θ−ϕ2)=1−14(a2+b2) sin(θ−ϕ2)=±12√4−a2−b2 tan(θ−ϕ2)=sin(θ−ϕ2)cos(θ−ϕ2)=±12√4−a2−b2±12√a2+b2 tan(θ−ϕ2)=±√4−a2−b2a2+b2 which is option (C)