sinθ+sinϕ=a ….. (1)
cosθ+cosϕ=b …… (2)
By equation (1) and (2) to,
sinθ+sinϕ=2sin(θ+ϕ)2cos(θ−ϕ)2 …… (3)
cosθ+cosϕ=2cos(θ+ϕ)2cos(θ−ϕ)2 …… (4)
Dividing equation (3) and (4) to, we get
sinθ+sinϕcosθ+cosϕ=2sin(θ+ϕ)2cos(θ−ϕ)22cos(θ+ϕ)2cos(θ−ϕ)2
ab=sin(θ+ϕ)2cos(θ+ϕ)2
tan(θ+ϕ)2=ab
Hence, this is the answer.