If Sinθ+√3Cos≥1,−π<θ≤π then the possible values of 'θ' are ................
sinθ+√3cosθ⩾12(sinθ×(12)+(√32)cosθ)⩾12sin(θ+(π3))⩾1sin(θ+(π3))⩾(12)(π6)≤θ+(π3)≤(5π6)(−π6)≤θ≤(π2)
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12