The correct option is C There are two pairs of values for (x,θ)
sinθ+√3cosθ=−(x2−6x+11)
⇒sinθ+√3cosθ=−[(x−3)2+2]
Range of L.H.S. is [−2,2]
Range of R.H.S. is (−∞,−2]
So the equality will hold only when
L.H.S. = R.H.S. =−2
For L.H.S.=−2
⇒sinθ+√3cosθ=−2
⇒12sinθ+√32cosθ=−1
⇒cos(θ−π6)=−1
⇒θ−π6=(2n+1)π
⇒θ=π6+(2n+1)π
Now, for 0≤θ≤4π
θ=7π6,19π6
For R.H.S. =−2
−[(x−3)2+2]=−2
⇒x=3
∴(x,θ)=(3,7π6),(3,19π6)