wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+3cosθ=2, then θ=5πm. Find m

Open in App
Solution

Solution:-
sinθ+3cosθ=2
3cosθ=2sinθ
Squaring both sides, we have
(3cosθ)2=(2sinθ)2
3cos2θ=2+sin2θ22sinθ
3(1sin2θ)=2+sin2θ22sinθ(sin2θ+cos2θ=1)
33sin2θ=2+sin2θ22sinθ
4sin2θ22sinθ1=0
The above equation is in the quadratic form, i.e. ax2+bx+c.
Now, by using quadratic formula, i.e., x=b±b24ac2a, we have
sinθ=(22)±(22)2(4×4×(1))2×4
sinθ=22±8+168
sinθ=2±64
θ=sin1(2+64)+2nπ Or θ=sin1(264)+2nπ For all ninteger
If θ=5πm
Case I:-
sin1(2+64)=5πm
m=5πsin1(2+64)
Case II:-
sin1(264)=5πm
m=5πsin1(264)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon