If sinx=3sin(x+2y),y≠nπ, then the absolute value of tan(x+y)tany is
Open in App
Solution
Given sinx=3sin(x+2y)⇒sin(x+y−y)=3sin(x+y+y)⇒sin(x+y)cosy–cos(x+y)siny=3[sin(x+y)cosy+cos(x+y)siny]⇒–2sin(x+y)cosy=4cos(x+y)siny⇒−tan(x+y)=2tany∴tan(x+y)tany=−2 So, absolute value will be 2