We have to simplify/modify
sin3x−cos3x to express in terms of sinx+cosx.
We will express them in terms of sinx and cosx
sin3x−cos3x=3sinx−4sin3x−4cos3x+3cosx=3(sinx+cosx)−4(sin3x+cos3x)=3(sinx+cosx)−4[(sinx+cosx)3−3sinxcosx(sinx+cosx)]
We know,
t2=(sinx+cosx)2=1+2sinxcosx
⇒sinxcosx=t2−12
⇒sin3x−cos3x=3t−4[t3−3(t2−1)2t]
=3t−4[t3−3t32+3t2]
=3t−4[−t32+3t2]
=3t+2t3−6t
=2t3−3t
=t(2t2−3)