If sin x + cos x = t, then sin 3x - cos 3x is equal to
t (2t2 - 3)
We have to simplify/modify sin 3x - cos 3x to express in terms of sin x + cos x.
We will express them in terms of sin x and cos x
sin 3x - cos 3x = 3 sin x - 4 sin3x - 4 cos3 x + 3 cos x
= 3 (sin x+ cos x) - 4 (sin3 x + cos3 x)
= 3(sin x + cos x) - 4 [ (sinx+cosx)3 - 3 sin x cos x (sin x + cos x)]
We know, t2 = (sinx+cosx)2 =1+ 2 sin x cos x
⇒ sin x cos x =t2−12
⇒ sin 3x - cos 3x = 3t - 4[ t3 - 3 (t2−1)2t]
= 3t - 4[ t3 - 3t32 + 3t2 ]
= 3t - 4[- t32 + 3t2 ]
= 3t + 2t3 - 6t
= 2t3 - 3t
= t (2t2 - 3 )