The correct option is C −5
For sinx=1213
Base =√132−122=5
Case 1: When x∈[0,π2]
In first quadrant, both secx and tanx are positive.
∴secx=135, tanx=125⇒tanx+secx=5
Case 2: When x∈(π2,π]
In second quadrant, both secx and tanx are negative.
∴secx=−135, tanx=−125⇒tanx+secx=−5
Alternate solution:
Given sinx=1213
tanx+secx=sinxcosx+1cosx=1+sinxcosx=2513cosx=25±13√1−sin2x=25±13×513=±5