If sin x=−12, 3π2<x<2π, find the values of sinx2, cosx2 and tan x2.
Or
If tan (π cos θ)=cot (π sin θ), prove that cos(θ−π4)=±12√2.
It is given that, x lies in IVth quadrant in which cos x is positive.
∴ sin x=−12
⇒ cos x=+ √1−sin2 x
[in IVth quadrant, cos x is positive]
= √1−(−12)2=√1−14=√32
Now, 3π2<x<2π
⇒ 3π4<x2<π [divide both sides by 2]
⇒ x2 lies in IInd quadrant.
⇒ sinx2>0, cosx2<0 and tanx2<0 ...(i)
Now, sinx2=√1−cos x2
⇒ sinx2=√1−√3/22=√2−√3. 4=√2−√32
⇒ cos x2=−√1+cos x2 [from Eq.(i)]
⇒ cos x2=−√1+√3/22=−√2+√34
= −√2+√32
and tan x2=−√1−cos x1+cos x [from Eq.(i)]
= −√1−√3/21+√3/2=−√2−√32+√3
Or
We have, tan(π cos θ)=cot (π sin θ)
⇒ sin (π cos θ)cos (π cos θ)=cos (π sin θ)sin (π sin θ)
⇒ sin (π cos θ).sin (π sin θ)
= cos (π cos θ).cos(π sin θ)
⇒ cos (π cos θ).cos (π sin θ)
−sin (π cos θ).sin (π sin θ)=0
⇒ cos (π cos θ+π sin θ)=0
[∵ cos(A+B)=cos Acos B−sin Asin B]
⇒ π cos θ+π sin θ=± π2[∵ cos(± π2)=0]
⇒ cos θ+sin θ=±12
On multiplying both sides by 1√2, we get
1√2cos θ+1√2sin θ=± 12√2
⇒ cosπ4cos θ+sinπ4sin θ=±12√2
∴ cos(θ−π4)=± 12√2
[∵ cos(A−B)=cos Acos B+sin Asin B]
Hence proved.