wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin x=12, 3π2<x<2π, find the values of sinx2, cosx2 and tan x2.

Or

If tan (π cos θ)=cot (π sin θ), prove that cos(θπ4)=±122.

Open in App
Solution

It is given that, x lies in IVth quadrant in which cos x is positive.

sin x=12

cos x=+ 1sin2 x

[in IVth quadrant, cos x is positive]

= 1(12)2=114=32

Now, 3π2<x<2π

3π4<x2<π [divide both sides by 2]

x2 lies in IInd quadrant.

sinx2>0, cosx2<0 and tanx2<0 ...(i)

Now, sinx2=1cos x2

sinx2=13/22=23. 4=232

cos x2=1+cos x2 [from Eq.(i)]

cos x2=1+3/22=2+34

= 2+32

and tan x2=1cos x1+cos x [from Eq.(i)]

= 13/21+3/2=232+3

Or

We have, tan(π cos θ)=cot (π sin θ)

sin (π cos θ)cos (π cos θ)=cos (π sin θ)sin (π sin θ)

sin (π cos θ).sin (π sin θ)

= cos (π cos θ).cos(π sin θ)

cos (π cos θ).cos (π sin θ)

sin (π cos θ).sin (π sin θ)=0

cos (π cos θ+π sin θ)=0

[ cos(A+B)=cos Acos Bsin Asin B]

π cos θ+π sin θ=± π2[ cos(± π2)=0]

cos θ+sin θ=±12

On multiplying both sides by 12, we get

12cos θ+12sin θ=± 122

cosπ4cos θ+sinπ4sin θ=±122

cos(θπ4)=± 122

[ cos(AB)=cos Acos B+sin Asin B]

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon