If sin x = √53 and x lies in IInd quadrant, find the values of cos x2, and sin x2 and tan x2.
∴ x lies in IInd quad.
⇒ π2<x<π⇒ π4<xx2<π2
Which means x2 lies in first quad.
Now, sin x=√53=ph
⇒p=√5 ⇒ b=2
h = 3
So, cos xbh=−23
(-ve due to IInd quad)
Thus,
cos x2=√1+cos x2=√1−232=1√6sin x2=√1−cos x2=√1+232=√56tan x2=sin x2cos x2=√561√6=√5