wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinx0, prove that cosxcos2xcos4xcos8x=sin(24x)24sinx and hence prove that cos2π15cos4π15cos8π15cos16π15=116.

Open in App
Solution

cos2π15cos4π15cos8π15cos(π+π15)cos2π15cosπ15cos4π15cos8π152sinπ15cosπ15cos2π15cos4π15cos8π152sinπ15=sin2π15cos2π15cos4π15cos8π152sinπ15[divide&nby2]2sin2π15cosπ15cos4π15cos8π152×2sinπ15sin4π15cos4π15cos8π154sinπ15×22
similarly, process is continuous, then we get
=sin16π1516sinπ15=sin(π+π15)16sinπ15sinπ1516sinπ15=116

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon