If sinx+cosecx=2 then sinnx+cosecnx is equal to
2
2n
2n–1
2n–2
Explanation for the correct option:
Given information,
⇒sinx+cosecx=2
⇒sinx+1sinx=2(∵cosecx=1sinx)
⇒sin2x+1sinx=2
⇒sin2x+1=2sinx
⇒sin2x-2sinx+1=0
⇒(sinx-1)2=0(∵sin2x+12-2sinx=(sinx-1)2)
⇒(sinx-1)=0(get square root on both sides)
⇒sinx=1
⇒cosecx=1(∵cosecx=1sinx)
From given question
⇒sinnx+cosecnx=12+12
⇒2
Hence option ‘(a)’ is correct.
If √2=1.4142, then √√2−1√2+1 is equal to
If log5 (3x−2)=2, then x is equal to