If sinx+sin2x+sin3x=1, then cos6x−4cos4x+8cos2x is equal to
sinx+sin2x+sin3x=1
sinx(1+sin2x)=1−sin2x
sinx(2−cos2x)=cos2x
we square both the sides
sin2x(2−cos2x)2=cos4x
(1−cos2x)(2−cos2x)2=cos4x
(1−cos2x)(4−4cos2x+cos4x)=cos4x
8cos2x+cos6x−4cos4x=4