If sinx+sin2x+sin3x=1, then cos6x−4cos4x+8cos2x is equal to
sinx+sin2x+sin3x=1⇒sinx+sin3x=1−sin2x⇒sinx(1+sin2x)=cos2x⇒sinx(2−cos2x)=cos2x⇒sin2x(2−cos2x)2=cos4x⇒(1−cos2x)(4+cos4x−4cos2x)=cos4x⇒4+cos4x−4cos2x−4cos2x−cos6x+4cos4x=cos4x⇒cos6x−4cos4x+8cos2x=4