If [sinx]+[√2cosx]=−3, (where [.] represents the greatest integer function), then x belongs to
A
[π,5π4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(π,5π4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
[π,5π4]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
no solution
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(π,5π4) ∵−1≤sinx≤1⇒[sinx]={−1,0,1} and −√2≤√2cosx≤√2⇒[√2cosx]={−2,−1,0,1,2} So, [sinx]+[√2cosx]=−3 is possible iff ⇒[sinx]=−1 and [√2cosx]=−2 ⇒−1≤sinx<0 and −√2≤√2cosx<−1 ⇒x∈(π,2π) and x∈(3π4,5π4) ∴x∈(π,5π4)