The correct option is D (π,5π4)
[sinx]+[√2cosx]=−3
We know that,
sinx∈[−1,1]⇒[sinx]∈{−1,0,1}√2cosx∈[−√2,√2]⇒[√2cosx]∈{−2,−1,0,1}
So, solution is possible only when
[sinx]=−1,[√2cosx]=−2⇒−1≤sinx<0⇒x∈(π,2π)⋯(1)[√2cosx]=−2⇒−√2≤√2cosx<−1⇒−1≤cosx<−1√2⇒x∈(3π4,5π4)⋯(2)
From equation (1) and (2), we get
x∈(π,5π4)