If sin2θ+sin2ϕ=12 and cos2θ+cos2ϕ=32, then cos2(θ−ϕ)=
58
Given:
sin2θ+sin2ϕ=12 …(i)
and
cos2θ+cos2ϕ=32 …(ii)
Squaring and adding (i) and (ii), we get
(sin2θ+sin2ϕ)2+(sin2θ+sin2ϕ)2=14+94⇒[2sin(2θ+2ϕ2)cos(2θ−2ϕ2)2]+[2cos(2θ+2ϕ2)cos(2θ−2ϕ2)2]=52
⇒4sin2(θ+ϕ)cos2(θ−ϕ)+4cos2(θ+ϕ)+cos2(θ−ϕ)=52⇒4cos2(θ−ϕ)+[sin2(θ+ϕ)+cos2(θ+ϕ)+52⇒4cos2(θ−ϕ)+[sin2(θ+ϕ)+cos2(θ+ϕ)+52⇒4cos2(θ−ϕ)=52⇒cos2(θ−ϕ)=52