If sin2x+2cosy+xy=0, then dydx
(y+2sinx)(2siny+x)
(y+sin2x)(2siny-x)
(y+sin2x)(siny+x)
none of these
Explanation for the correct option.
Step 1: Differentiate both sides with respect to x we have:
Given that, sin2x+2cosy+xy=02sinxcosx-2sinydydx+y+xdydx=0dydx(x-2siny)=(-y-2sinxcosx)dydx(x-2siny)=(-y-sin2x)
Step 2: Calculate the value of dydx
∴dydx=(-y-sin2x)(x-2siny)=-(y+sin2x)(x-2siny)=(y+sin2x)(2siny-x)Hence option B is correct.
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: