wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin2 y+cos xy=k, find dydx at x=1, y=π4.

Open in App
Solution

We have,

sin2 y+cos xy=k

By differentiating both sides with respect to x, we get

ddxsin2 y+ddxcos xy=dkdx2sin yddxsin y+-sin xyddxxy=02sin y cosy-sin xyxdydx+ydxdx=02sin y cosy-xsin xydydx-ysin xy=0xsin xydydx=2sin y cosy-ysin xy

dydx=2sin y cosy-ysin xyxsin xydydxx=1, y=π4=2sin y cosy-ysin xyxsin xy=2sinπ4 cosπ4-π4sin1×π41×sin1×π4=2×12 ×12-π4×121×12=2×12-π4212=11-π4212=42-π4212=42-π4=2-π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon