wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin2A=λ sin2B,provethat:tan(A+B)tan(AB)=λ+1λ1

Open in App
Solution

We have
sin2A=λ sin2Bλ=sin2Asin2B
Now,
λ+1λ1=sin2Asin2B+1sin2Asin2B1=sin2A+sin2Bsin2Bsin2Asin2Bsin2B=sin2A+sin2Bsin2Asin2B=2sin(2A+2B2)cos(2A2B2)2sin(2A2B2)cos(2A+2B2)=sin(A+B)cos(AB)sin(AB)cos(A+B) λ+1λ1=tan(A+B)tan(AB)tan(A+B)tan(AB)=λ+1λ1


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon