If sin2A=λ,sin2B, then write the value of λ+1λ−1
We have,
sin2A=λsin2B,⇒sin2Asin2B=λ⇒sin2Asin2B+1=λ+1⇒sin2A+sin2Bsin2B=λ+1 …(i)Againsin2A=λsin2B,⇒sin2Asin2B=λ⇒sin2Asin2B−1=λ−1⇒sin2A−sin2Bsin2B=λ−1 …(ii)Dividingequation(i)byequation(ii),wegetsin2A−sin2Bsin2A−sin2B=λ+1λ−1⇒2sin(2A+2B2)cos(2A−2B2)2sin(2A−2B2)cos(2A+2B2)=λ+1λ−1⇒sin(A+B)cos(A−B)sin(A−B)cos(A+B)=λ+1λ−1⇒fracsin(A+B)cos(A−B)cos(A+B)sin(A−B)=λ+1λ−1⇒tan(A+B)tan(A−B)λ+1λ−1∴ λ+1λ−1=tan(A+B)tan(A−B)