wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin2A=λ,sin2B, then write the value of λ+1λ1

Open in App
Solution

We have,
sin2A=λsin2B,sin2Asin2B=λsin2Asin2B+1=λ+1sin2A+sin2Bsin2B=λ+1 (i)Againsin2A=λsin2B,sin2Asin2B=λsin2Asin2B1=λ1sin2Asin2Bsin2B=λ1 (ii)Dividingequation(i)byequation(ii),wegetsin2Asin2Bsin2Asin2B=λ+1λ12sin(2A+2B2)cos(2A2B2)2sin(2A2B2)cos(2A+2B2)=λ+1λ1sin(A+B)cos(AB)sin(AB)cos(A+B)=λ+1λ1fracsin(A+B)cos(AB)cos(A+B)sin(AB)=λ+1λ1tan(A+B)tan(AB)λ+1λ1 λ+1λ1=tan(A+B)tan(AB)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature and Location of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon