If sin2A = sin(90-3A). Find the value of sinA
1
Given sin2A = sin(90-3A)
Sin2A = cos3A
2sinA cosA = 4cos3A−3cosA
2sinA cosA - 4cos3A+3cosA = 0
cosA (2sinA - 4cos2A+3) = 0
cosA = 0 or 2 sinA - 4cos2A+3 = 0
A = 90∘
sinA = sin90∘ = 1
2sinA - 4(1−sin2A)+3=0
2sinA −4+4sin2A+3=0
4sin2A+2sinA−1=0
sinA=−2±√(2)2−4(4)(−1)2×4
sinA=−2±√208=−2±2√58
sinA=−1±√54
sinA=1,−1±√54