sin3θ+2sinθcosθ+cos3θ=13sinθ−4sin3θ+2sinθcosθ+4cos3θ−3cosθ=13(sinθ−cosθ)−4(sin3θ−cos3θ)=sin2θ+cos2θ−2sinθcosθ3(sinθ−cosθ)−4(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)=(sinθ−cosθ)2(sinθ−cosθ)[3−4(sin2θ+sinθcosθ+cos2θ)]−(sinθ−cosθ)2=0(sinθ−cosθ)[3−4(1+sinθcosθ)−(sinθ−cosθ)]=0∴sinθ−cosθ=0ortanθ=1