If sinA=12, cosB=1213, where π2<A<π and 3π2<B<2π, find tan(A-B)
We have,
sinA=12, cosB=1213
∴cosA=√1−sin2A and sinB=−√1−cos2B
[ ∵ cosine is negetive in second quadrant and sine is negative in fourth quadrant]
⇒cosA=−√1−(12)2 and sinB=−√1−(1213)2
⇒cosA=−√1−14 and
sinB=−√1−144169
⇒cosA=−√34 and
sinB=−√25169
⇒cosA=−√32 and sinB=513
∴tanA=sinAcosA=12−√32=−1√3
and, tanB=sinBcosB=−5131213=−512
Now,
tan(A−B)=tanA−tanB1+tanA.tanB
=−1√3−(−512)1+(−1√3)×(−512)=−1√3−−5121+(−1√3)×(−512)
=−1√3+5121+512√3=−12+5√312√312√3+512√3
= 5√3−125√3+12√3
⇒tan(A−B)=5√3−125√3+12√3