wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If sinA=12,cosB=32, where π2 (i) tan(A+B)
(ii) tan(A-B)

Open in App
Solution

We have,
sinA=12,cosB=32
cosA=1sin2A
sinB=1cos2B
[ cosine is negetive in second quadrant]
cosA=1(12)2
sinB=1(32)2
cosA=114 and
sinB=134
cosA=34 and
sinB=14
cosA=32 and sinB=12
tanA=sinAcosA=1232=13
Now,
tan(A+B)=tanA+tanB1tanA.tanB
=13+131(13)×(13)
=0
tan(A+B)=0
(ii) We have,
sinA=12 and cosB=32
cosA=sqrt1sin2A and
sinB=1cos2B
[ cosine is negetive in second quadrant]
cosA=1(12)2
sinB=1(32)2
cosA=114 and
sinB=134
cosA=34 and
sinB=14
cosA=32 and
sinB=12
tanA=sinAcosA=1232=13
and, tanB=sinBcosB=1232=13
Now, tan(AB)=tanAtanB1+tanA.tanB
=13(13)1+(13)×13
=23113=23313
=2323 = 33
=3×33=3
tan(AB)=3


flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon