If sinA=12,cosB=√32, where π2 (i) tan(A+B)
(ii) tan(A-B)
We have,
sinA=12,cosB=√32
∴cosA=−√1−sin2A
sinB=√1−cos2B
[∵ cosine is negetive in second quadrant]
⇒cosA=−√1−(12)2
sinB=√1−(√32)2
⇒cosA=−√1−14 and
sinB=√1−34
⇒cosA=−√34 and
sinB=√14
⇒cosA=−√32 and sinB=12
∴tanA=sinAcosA=12−√32=−1√3
Now,
tan(A+B)=tanA+tanB1−tanA.tanB
=−1√3+1√31−(−1√3)×(1√3)
=0
∴ tan(A+B)=0
(ii) We have,
sinA=12 and cosB=√32
∴cosA=−sqrt1−sin2A and
sinB=√1−cos2B
[∵ cosine is negetive in second quadrant]
⇒cosA=−√1−(12)2
sinB=√1−(√32)2
⇒cosA=−√1−14 and
sinB=√1−34
⇒cosA=−√34 and
sinB=√14
⇒cosA=−√32 and
sinB=12
∴tanA=sinAcosA=12−√32=−1√3
and, tanB=sinBcosB=12√32=1√3
Now, tan(A−B)=tanA−tanB1+tanA.tanB
=−1√3−(1√3)1+(−1√3)×1√3
=−2√31−13=−2√33−13
=−2√323 = −3√3
=−√3×√3√3=−√3
∴tan(A−B)=−√3