If sinA = 12 , verify that 2 sinA cosA = 2tanA(1+tan2A)
We know that
SinA = BCAC = 12
Let BC = k and AC = 2k
∴ AB = √AC2−AB2 ......... (Pythagoras theorm )
= √(2k)2−k2 = √4k2−k2 = √3k2 = √3k
Now cos A = ABAC = √3k2k = √32
and tanA = BCAB = k√3k = 1√3
Now 2 sinA cosA = 2.12 . √32 = √32 ......(i)
and 2tanA1+tan2A = 2.1√31+(1√3)2 = 21√31+13 = 21√343
= 2√3×34=√32 ........... (ii)
Hence from (ii) and (i)
2 sinA cosA = 2tanA1+tan2A.