If sinA=45 and cosB=513, where 0<A, B<π2, find the values of the following:
(i) sin(A+B)
(ii) cos(A+B)
(iii) sin(A-B)
(iv) cos(A-B)
We have,
sinA=45 and B=513
∴cosA=√1−sin2A and sinB=√1−cos2B
⇒cosA=√1−(45)2 and sinB=√1−(513)2sinB=√1−(513)2
⇒cosA=√1−1625 and sinB=√1−25169
⇒cosA=√25−1625 and sinB=√169−25169
⇒cosA=√925 and sinB=√144169⇒cosA=35 and sinB=1213
Now,
sin(A+B)=sinA cosB+cosA sinB
=45×513+35×1213=2065+3665=20+3665=5665
(ii) We have,
sinA=45 and B=513
∴cosA=√1−sin2A and sinB=√1−cos2B
⇒cosA=√1(45)2 and
sin B=√1−(513)2
⇒cosA=√1−1615
sin B=√1−25169
⇒cosA=√25−1625 and
sin B=√169−25169
⇒cosA=√925 and
sin B=√144169
cosA=35 and
sinB=1213
Now,
cos(A+B)=cosA cosB−sinA sinB
=35×513−45×1213
=1565−4865
=15−4865=−3365
(iii) We have,
sinA=45 and cosB=513
∴cosA=√1−sin2A and sinB=√1−cos2B
⇒cosA=√1−(45)2 and
sinB=√1−(513)2
⇒cosA=√1−1625 and sinB=√1−25169
⇒cosA=√25−1625 and
sinB=√169−25169
⇒cosA=√925 and sinB=√144169
⇒cosA=35 and sinB=1213
Now,
sin(A−B)=sinA cosB−cosA sinB
=45×513−35×1213
=2065+3665=20−3665=−1665
(iv) We have,
sinA=45 and cosB=513
∴cosA=√1−sin2A and
sinB=√1−cos2B
⇒cosA=√1−(45)2
sinB=√1−(513)2
⇒cosA=√1−1625 and
sinB=√1−25169
⇒cosA=√25−1625 and
sinB=169−25169
⇒cosA=√925 and sinB=1213
Now,
cos(A−B)=cosA cosB+sinA sinB
=35×513+45×1213
=1565+4865
=15+4865
=6365