If sinA+sinB=a and cosA+ cosB= b then the value of cos(A+B) is
Let SinA + SinB = a ------------(1)
and CosA + CosB = b ------------(2)
Sq the two eqns, and subtract (2)^2 - (1)^2
You will get, Cos2A+Cos2B+2Cos(A+B) = b2-a2.
So, 2Cos(A+B)Cos(A-B)+2Cos(A+B) = b2-a2.
or Cos(A+B){2Cos(A-B)+2} = b2-a2 ----------------(3)
Now Sq the two eqns and add, ie (2)^2+(1)^2
You will get 2+2Cos(A-B) = a2+b2 -----------[Use this in (3)]
You'd get Cos(A+B){a2+b2) = (b2-a2).
or Cos(A+B) = (b2-a2)/{a2+b2)
which is the answer.
hope it helps friend