If sinA+sinB=α and cosA+cosB=β , then write the value of tan(A+B2)
We have, sinA+sinB=α and cosA+cosB=β …(ii) sinA+sinBcosA+cosB=αβ⇒2sin(A+B2)cos(A−B2)2cos(A+B2)cos(A−B2)=αβ⇒sin(A+B2)cos(A+B2)=αβ⇒tan(A+B2)=αβ
Prove that: (i) sinA+sin3AcosA−cos3A=cotA (ii) sin9A−sin7Acos7A−cos9A=cot8A (iii) sinA−sinBcosA−cosB=tanA−B2 (iv) sinA+sinBsinA−sinBtan(A+B2)cotA+B2 (v) cosA+cosBcosB−cosA=cotA+B2cotA−B2
If (sin A)/(sin B) = √3/2 , (cos A)/(cos B) = √5/2, then find the values of tan A and tan B.
If cos(A-B) = 3/5 and tanA*tanB = 2 then
(a) cosA*cosB= 1/5 (c) cos(A+B)= -1/5
(b) sinA*sinB= 2/5 (d) sinA*sinB=4/5