If sinx+cosx+tanx+cotx+secx+cosecx=7 and sin2x=a−b√7 , then a−b+14 is divisible by
sinx+cosx+1sinxcosx+sinx+cosxsinxcosx=7
(sinx+cosx)[1+2sin2x]=7−2sin2x
square(1+sin2x)[1+2sin2x]2=49+4sin22x−28sin2x
sin2x=t solve it t2−44t+36=0
sin2x=22−8√7
a=22,b=8