If siny=xsin(a+y), then dy/dx=
siny=xsin(a+y).
∴x=siny/sin(a+y).
Differentiating w.r.t. y, using the Quotient Rule, we have,
dx/dy=[sin(a+y)⋅ddy{siny}−siny⋅ddx{sin(a+y)}]/sin²(a+y),
=[sin(a+y)cosy−sinycos(a+y)⋅ddy(a+y)]/sin ²(a+y),...[The Chain Rule],
=sin(a+y)cosy−sinycos(a+y)/sin ²(a+y),
=sin{(a+y)−y}/sin ²(a+y),
=sina/sin²(a+y).
⇒dy/dx=1/(dx/dy=sin²(a+y)/sina.