If Sn=cosnθ+sinnθ then the value of 3S4-2S6 is given by :
4
0
1
7
Explanation for the correct option.
Given, Sn=cosnθ+sinnθ.
3S4-2S6=3cos4θ+sin4θ-2cos6θ+sin6θ=3cos2θ2+sin2θ2-2cos2θ3+sin2θ3=3cos2θ+sin2θ-2sin2θcos2θ-2cos2θ+sin2θ3-3sin2θcos2θcos2θ+sin2θ=31-122sinθcosθ2-21-342sinθcosθ2=31-12sin2θ2-21-34sin2θ22sinθcosθ=sin2θ=3-2=1
Hence, option C is correct.
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d=Sn−k Sn−1+Sn−2, then k =
If Sn=cosnθ+sinnθ, then the value of 3S4−2S6 is given by