If Sn=16×11+111×16+116×21.............up to n terms, then 6Sn equals
5n-45n+6
n5n+6
2n-15n+6
15n+6
Explanation for the correct option
Step 1: We can write,
16×11=1516-111 …1
Similarly,
111×16=15111-116...(2)
116×21=15116-121 ….3
And so on.
Step 2: Let Sn=16×11+111×16+116×21.............n terms
Then,
Sn=16×11+111×16+116×21.............15n+15n+6
Step 3: From equation (1),(2)and(3) we can write Sn,
Sn=1516-111+111-116+116-121..............-15n+6
Sn=1516-15n+6
Sn=155n+6-665n+6
Sn=n65n+6
6Sn=n5n+6
Hence, the correct option is ‘B’.