I=∫x3sin(lnx2)dx
Put lnx=t
⇒x=et
⇒dx=etdt
I=∫(et)3sin(2t)etdt =∫(et)3sin(2t)etdt =∫e4t(sin2t)dt =e4t42+22[4sin2t−2cos2t]+C[∵∫eaxsinbx=1a2+b2eax[asinbx−bcosbx]+C]⇒I=(elnx)420[4sin(2lnx)−2cos(2lnx)]+C⇒I=x420[4sin(lnx2)−2cos(lnx2)]+C
On comparing, we have
A=4, B=20, D=−2∴BA−D=204−(−2)=5+2=7