wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1x2+1y2=a(xy) , then show that dydx=1y21x2.dx

Open in App
Solution

Understanding differentiation using gradient formula for quadratic graphs
If 1x2+1y2=a(xy)
then S.T dydx=1y21x2dx
let x=sinA;y=sinB...(1)
f(x)=1sin2A+1sin2B=a(sinAsinB)=cosA+cosB=a(sinAsinB)
we know that [1sin2A=cos2A]
2cos(A+B2)cos(AB2)=a[2sin(AB2)cos(A+B2)]
2cos(AB2)=a.2sin(AB2)cos(AB2)sin(AB2)=a
cot(AB2)=a[cosθsinθ=cotθ]
AB2=cot1a
sin1xsin1y=2cot1a
Applying differentiation on both sides
11x211y2dydx=0
dydx=1y21x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Expression for SHM
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon