wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1x2+1y2=a(xy) then prove that dydx=1y21x2

Open in App
Solution

1x2+1y2=a(xy)

1x2+1y2(xy)=a

Differentiating both sides with respect to x, we get

(xy){121x2(2x)+(2y)21y2dydx}(1x2+1y2)(1dydx)(xy)2=0

(xy)(x1x2y1y2dydx)(1x2+1y2)(1dydx)=0

x(xy)1x2(xy)y1y2dydx(1x2+1y2)+(1x2+1y2)dydx=0

x(xy)1x21x21y2+(1x2+1y2(xy)y1y2)dydx=0

(1x2+1y2xyy21y2)dydx=x2xy1x2+1x2+1y2

((1x2)1y2+1y2xy+y21y2)dydx=x2xy+1x2+1x21y21x2

(1x21y2+1xy1y2)dydx=(1xy+1x21y2)1x2

11y2dydx=11x2

dydx=1y21x2.

1170754_1282693_ans_8c55265b1a3d46d08d69dca34016dca5.JPG

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon