The correct option is D f(x,y)=x2y2
Given : √(1−x6)+√(1−y6)=a(x3−y3)
Let, x3=cosp and y3=cosq
⇒√1−cos2p+√1−cos2q=a(cosp−cosq)⇒sinp+sinq=a(cosp−cosq)⇒2sin(p+q2)cos(p−q2)=−2asin(p−q2)sin(p+q2)⇒tan(p−q2)=−1a⇒p−q=2tan−1(−1a)⇒cos−1x3−cos−1y3=2tan−1(−1a)
Differentiating w.r.t. x both side, we have
−3x2√1−x6+3y2√1−y6dydx=0⇒dydx=x2y2√1−y61−x6
Hence, f(x,y)=x2y2