The correct option is D [7,25]
√2(x+24)−√x−7≥√x+7⋯(1)
For equation (1) to be true,
2(x+24)≥0⇒x≥−24
x−7≥0⇒x≥7
x+7≥0⇒x≥−7
So, x∈[7,∞)⋯(2)
Now,
√2(x+24)−√x−7≥√x+7
⇒√2(x+24)≥√x−7+√x+7
Squaring both side, we get
(√2(x+24))2≥(√x−7+√x+7)2
⇒2(x+24)≥x−7+x+7+2√x2−49
⇒24≥√x2−49
Squaring both side again, we get
576≥x2−49
⇒x2−625≤0
⇒(x−25)(x+25)≤0⇒x∈[−25,25]⋯(3)
Taking intersection of equation (2) and (3), we get
x∈[7,25]