If 3√(1−x3)(y−z)+3√(1−y3)(z−x)+3√(1−z3)(x−y)=0 then prove that (1−x)3(1−y)3(1−z)3=(1−xyz)3
Open in App
Solution
It is a question base on the formula that if A + B + C = 0 then A3+B3+C3=3ABC Let (1−x3)1/3=aetc. y - z = l etc. We are given that al + bm + cn = 0 ....(1) l + m + n = ∑ (y - z) = 0 ....(2) lx + my + nz = ∑ x(y - z) = 0 ....(3) a3l3+b3m3+c3n3=abclmn,by(1) ....(4) x3l3+y3m3+z3n3=xyzlmn,by(3) ....(5) l3+y3+z3=3lmn,by(2) .....(6) Subtracting the last two, we get ∑3l3(1−x3)=3lmn(1−xyz) a3l3+b3m3+c3n3=3lmn(1−xyz)∵1−x3=a3 or 3abclmn = 3lmn (1 - xyz) by (4) Cancel 3lmn and cube both sides ∴a3b3c3=(1−xyz)3 or (1−x3)(1−y3)(1−z3)=(1−xyz)3